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Abstract

This paper presents a new deterministic closed-loop paligement algorithm based on quantized
feedback from the receiver for distributed beamformingcdntrast with previously proposed methods,
which entailed repeated transmissions from all the nodebkénnetwork, this new algorithm requires
each node to transmit only once during the synchronizatymtec This drastically reduces the amount
of power consumed to achieve phase alignment, yet the newithlign converges at least as fast as all
other existing schemes. In contrast with previous analg§eséstributed beamforming based on random
phase updates, where noise had been disregarded, hergptigtly included in the models and shown
to have a considerable effect that cannot be ignored. Widhvathout noise, analytical expressions that
characterize the performance of the new algorithm are gealiwith emphasis on various limiting

regimes of interest.
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. INTRODUCTION

Distributed beamforming is a cooperative communicatiahmggue that enables a cluster of
sensors to emulate a virtual antenna array, allowing feotied message delivery to the intended
destination. In other words, nodes pool their antenna ressuand synchronize their radio trans-
missions so that they coherently aggregate in a desiredtidinein space yielding power gains
proportional to the number of cooperating devices. Moredveampattern shaping is beneficial
for reducing interference towards/from unintended teaisinand favors the implementation of
Space Division Multiple Access (SDMA) schemes which allbv hetwork to spatially multiplex
different streams of data for independent receivers.

A possible application is in wireless sensor networks, Whitust comply with strict energy-
efficient policies with a view on maximizing the system’slgpan. Sensors are power-restrained
devices that survive on limited battery supplies that tgfiyccannot be recharged. Single-node
communication happens to be highly inefficient, since tlgnali transmitted from a typically
low-cost isotropic antenna is undirected and, conseqyentlly a fraction of the transmitted
power becomes useful for communication purposes. Moretivetransceiver is the most power-
consuming element in a sensor, thus a more efficient use sfréisiource is desirable. Under
these circumstances, collaboration comes as a compelilgian when a common message,
usually the result of a sensing campaign, must be relayeddoever. Potential gains achievable
with distributed beamforming, in fact, enable cooperasegsors to back off their powers when

transmitting information.

Clearly, for a cluster of distributed nodes, emulation of igual array is not trivial. As
opposed to a centralized scenario, where all elements atigtitshare a common phase and
frequency reference, and a regular geometry guarantdgsctogtrol on the relative phase shifts,
this distributed setup faces new challenges. Each nodethasvin, independent local oscillator
with random initial phase as well as phase noise, and sensatidns are typically unknown.
Distributed phase-alignment procedures are thus requirextder for the network to be able

to steer a beam in the desired direction in space. This soehas attracted the attention of
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many researchers, that have tackled various aspects gbribtidern from different perspectives

by designing algorithms for phase alignment [1]-[22], bydsting the properties of average
beampatterns created by nodes randomly distributed inesg@ough the theory of random

arrays [23]-[28], and by providing node selection proceduhat sort transmitters on the basis
of their mutual phase alignment to efficiently create anyaoat of a useful subset of nodes
[29]-[32].

A. State of the Art

All works in [1]-[22] tackle the phase alignment issue forcesessful beam steering. They
evaluate the performance in terms of the improvement of theeRed Signal Strength (RSS),
i.e., the intensity of the useful part of the aggregate digihahe receiver, as the distributed
synchronization procedure unfolds. In other words, the airthese algorithms is to enable the
network to steer a beam in the desired direction in space bgessively adjusting the phase
of the transmitted signals according to the policy dictabgdthe algorithm. Clearly, the faster
the received signals achieve coherence, the better in tefnesmiergy consumption since less
signaling is required for synchronization.

In [1]-[4] a closed-loop, distributed, and iterative phasachronization procedure, called
Randomi-Bit Feedback (RBF) algorithm, is presented. Nodes apply, independentignfone
another and simultaneously, random phase adjustment®itosignals. On the basis of one bit
of feedback from the receiver, which informs the networkhié set of random perturbations has
improved or worsened the RSS, the nodes decide whether t@amaor discard the introduced
phase shifts. This randomized process is carried out Urdir¢ceived phases achieve a desired
level of coherence. Authors in [1] show that, for a wide virief probability distribution
functions (PDFs) for the phase adjustments, the procedads|to asymptotic coherence with
probability one. An analytical framework is provided in [§ analyze the convergence of
the RIBF algorithm by considering it as a random search algorithm{6] and [7], a signed
variation of the RBF algorithm is introduced to improve convergence: if nogkE®ive a negative
feedback, they change the sign of the tested phase shiftsgotglthem before starting a new test.
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A further enhancement of this method is described in [8], i@haén case of positive feedback,
the nodes insist on applying the successful shift until ilgaea starts worsening again, and in
case of negative feedback, they adopt the same strategyybuavérting the sign of the shift.
In [9] this application is extended to a multiuser scenanbgere M separate clusters of nodes
have to communicate witi/ distinct receivers. In this work, distributed beampattehaping

is used to implement SDMA schemes: the network is divided it sub-clusters of nodes that
have to multiplex)/ independent streams of dataté non-cooperating receivers. New versions
and improvements of HBF are also contained in [18]-[20]. A feedback based synubation
procedure is also introduced in [10]. Here, the receivedaigs considered as composed by
a sum of complex signals, each one relative to the aggregatsenissions from a sub-cluster
of nodes. The receiver estimates the magnitude and the mfabe signals relative to each
cluster, and the objective is to align these signals in phasepposed to the HBF algorithm,
the feedback is based on the complex signal, and not only @mgnitude, and it is directed
to subsets of nodes.

In our previous works, [21], [22], with a view on reducing tie to synchronize with respect
to the random approach, we proposed an iterative closqugomcedure, still based on quantized
feedback from the receiver, but built on a deterministicgghapdate strategy. In this approach,
nodes take turns in performing phase tests, and they areatiolyed to test a particular number
of predefined phase shifts. The receiver performs suceef85 measures for each node (one
for every possible phase adjustment), and sends a bit adbéeidor each of these measurements.
The node will then apply the phase shift that has yielded #s BSS improvement. Simulation
results provided in [21], [22] show how the deterministicagtgy outperforms the random one
in terms of convergence time both in static and time-varyghgnnel environments.

Other relevant contributions in this area are [11]-[17].idd-slotted closed-loop procedure
for carrier synchronization is presented in [11] and [12h iteresting blind zero-feedback
distributed beamforming is presented in [13]. Here, theuratmisalignment of the carriers is
exploited to reach a suitable set of beamforming gains. Adwgblex amplify and forward relay

network is considered in [14]: an adaptive beamforming swhdased on predefined sets of
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deterministic perturbations of the beamforming weightsedr by a one-bit feedback from the
receiver is presented. Authors in [15] analyze the problémisiributed beamforming from an
information-theoretic point of view, providing a lower bwa for the time required to achieve
phase coherence at destination in a binary signaling casgl6l], a method for carrier phase
and frequency synchronization is presented in case of atramsmitter cooperation scheme.
It is shown how this method is also robust to mobility of therimals. In [17] a closed-loop
phase tracking routine based on Code Division Multiple Ascis proposed to achieve coherent
combining of signals transmitted from a cluster of disttdzbantennas. The effect of partitioning
the transmitted energy between synchronization symbalsdata packets is investigated, by
observing its impact on the data bit error rate. In additpractical implementations of distributed
beamforming have been proven to be effective, [33], feasidnhd implementable on commodity
hardware with low-quality oscillators [34].

B. Our Contribution

Our focus is on distributed synchronization schemes thatore a low-rate quantized feedback
from the receiver [1]-[10]. Surprisingly, given that thefel of noise is the main driver of
distributed beamforming, the impact of noise in these s@senhas been ignored. The first
attempt to consider the impact of noise has been made inlj8bthis analysis does not quantify
the actual performance of these schemes when the syncationiprocess is hindered by this
impairment. In this work, noise is incorporated into the mlcahd shown to have a considerable
effect that simply can not be ignored.

A new algorithm, more energy-efficient than its predecess@ proposed and its performance
is analytically characterized, with and without noise. Qamsons with existing alternatives are
also provided, with and without noise. Specifically:

« We put forth a new deterministic algorithm that relies on-@ate feedback to successively

align the phases of the transmitters to an arbitrary biasctsd by the receiver. This
algorithm converges faster than existing random schemgsvéh less energy consumption

than previous deterministic solutions.
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« The performance of the new algorithm is analytically cheeazed in the absence of noise.
This characterization enables bench-marking againstqarsvandom solutions, which were
all evaluated only in noiseless conditions.

« The analytical characterization of the new algorithm iseagied to incorporate the impact
of noise, with emphasis on the low- and high-power regimdse former embodies the
conditions in which a distributed beamforming system womldst likely have to operate
whereas the latter serves as a bridge with the noiselesgsaalhe analysis sheds light
on the interplay between the number of sensors, the sigrabise ratio (SNR), and the
feedback rate.

« The performance of the new algorithm is compared againstatheandom schemes. Since
the analysis of random schemes appears unwieldy in the faceise, the performance is
determined via Monte-Carlo.

The remainder of the manuscript is organized as followsgtreeral system model is described
in Section II, the random noiseless synchronization apgraa illustrated in Section 1ll, and
Section IV describes the deterministic synchronizatiacpdure. The analytical insights related
to the latter are provided in Section V both in the absence @edence of noise (in Section
V-A and Section V-B, respectively). Finally, Section VI faees a comparison between the new

algorithm and the random one and Section VII concludes tipempa

1. GENERAL SYSTEM MODEL

In the next sections, we will be discussing two synchromrealgorithms, the RBF algorithm
from [1] and our proposed algorithm. In this section, we préshe general system model that
is common to both algorithms. We will then adapt this modedach particular algorithm in its
corresponding section.

The following assumptions are made, in line with previouskson phase synchronization:

« Nodes are unaware of their own locations, of the positiorhefreceiver, and of channel-

state information (CSI).

« All devices are equipped with an isotropic antenna.
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« All sensors transmit at the same power.

« Since the receiver’s distance is considered to be muchegréen the radius of the network
itself, path losses are considered to be the same for allsnode

« There is no multipath and thus the effect of the channel atsdora phase rotation, random
and static for each node. This could represent, for instasitteations where the receiver is
a satellite or an elevated cell site

« All nodes are locked to the same carrier frequerigyand frequency drift is considered
negligible. Hence, the phase shift of each local oscillator is alsdcsttd modeled as
uniform in [0, 27).

« Sensors share a common time reference, i.e., time synelatam is present throughout the

whole network.

In order to steer a beam towards the receiver, each tramesmaitbuld multiply its signal by an
appropriate complex beamforming weight to compensate &tih khe channel rotation and the
misalignment due to the local oscillator’s phase offseeadth node had access to global CSI, the
optimal beamforming weights could be locally computed amel gignals would perfectly align
in the target direction. In a distributed setup howeverawing full CSI may not be feasible. To
bypass this obstacle, we consider iterative closed-loogtepnization procedures where each
transmitter can locally adjust the phase of its signal based low-rate feedback it receives
from the destination. The phase adjustment is equivalemtuitiplying the signal by a complex,
unit-magnitude beamforming coefficient with a properlyested phase. The type of feedback
and the type of local phase adjustments depend on the chgeehrgnization protocol.

Let NV, be the number of active devices in a given time-slot. The ebbphase rotation and

1This assumption can be relaxed, since the results are atil when static fading is introduced in the model. Its impac
translates into a static offset of the average beamformaig gith respect to the equal gain combining case, which nidpe
on the statistics of the considered fading distribution.

2A frequency offset will actually be present, and this trates into a maximum time window within which phase coherence
can be assumed to be maintained. Loss of coherence has meteti effect on the beamforming gain, and this calls for
re-synchronization. This thus becomes a requirement orimue convergence time [21].
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the phase offset of the local oscillator for nodare absorbed into a single variable, In turn,
the phase rotation that each transmitter has applied tdgteglsat timet is denoted byy;|[t].
During synchronization, nodes transmit unmodulated eesr{beacons), so the complex signal
at the receiver is given by

Na

r(t) = e/ /et Z e/ WitoiltD Lo (t) (1)

i=1
wheren(t) is a complex Gaussian random variable, with mean zero anaheao?, representing
the noise at time. The value of/N, is fixed throughout the synchronization.

After down conversion and sampling, at the end of time siothe resultant complex vector

relative to the useful signal is

Ns[m]

Rlm] = Z o Wit ilm]) (2)

=1
where Ng[m] is the number of nodes that have been synchronized up to twhens The only
component in this expression that is locally tunable by etnahsmitter is the phase of the
beamforming weight. The RSS at the end of time sigt given the superposition alNg[m)|
carriers, is simply

Ns[m]
IR[m]| = Z e Witdilm]) | (3)

=1
We define the RSS normalized to the total number of ndddaa the network as

Rjm) 2 RN @

and we dub it normalized RSS (NRSS). The NRSS is maximizechwhe- ¢;[m] = T[m], Vi,
whereY[m] is an arbitrary constant. The objective is to adjpi$tr] in order to obtain an optimal
set of beamforming weights that result in received signasels that are as close as possible to

this condition of coherence.
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[1I. N OISELESSRANDOM DISTRIBUTED BEAMFORMING

The authors in [1] present a random procedure for phase symization, called RBF,
ignoring the noise term in (1). According to an iterative ggigm, at the beginning of each
time slot, all sensors simultaneously apply a random andgaddent phase adjustment to their
carriers. On the basis of a one-bit feedback from the recdivey decide whether to maintain or
discard the introduced phase shifts: the feedbackkeep” signal if the set of phase adjustments
has improved the RSS, or“discard” signal otherwise.

Assuming¢;[m — 1] is the best known carrier phase at tlie sensor at time slot:, each
transmitter applies a random phase adjustment denotegras taken from a predetermined
PDF f;,(-), striving for a potentially better phase. The applied phiasezments are independent

over time and across nodes. The tested phase foithheode at time slotn is then
¢ °m] = ¢i[m — 1] + 6 [m]. (5)

The corresponding RS$R[m]|es IS given by (3), replacingp;[m] with ¢{m] and Ng[m]
with N. The receiver measurd® [m]|.st and sends a feedback signal indicating whether the
introduced phase shifts have improved the quality of theadigr not, i.e., if|R[m]|w.st iS greater

or smaller thanR[m — 1]

, Which is the best value for the RSS up to time stat The update

process forp;[m| can be summarized as follows:

=fm], IR R[m —1
bilm] = ¢ioim),  [R[mllest> [R[m — 1] ®)
¢ilm — 1], [R[m]lest < [R[m — 1]|
The value for the record of the best observed RSS is also eghdet
[R[m]| = max (|R[m]|iest [R[m — 1]|) ()

This procedure is iterated and stops only once the RSS hate@aa particular threshold
value. Phase synchronization is thus achieved in a conipldistributed fashion. No network
coordination is required, and the receiver only has to edgnthe strength of the aggregate of

all the signals.
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In [1], authors develop an analytical framework to chanaz¢ethe behavior of the RSS as
R1BF takes place. This elegant analysis considers the satsgribed in Section I, where
carriers are synchronized in frequency, with constant (minown) phase offsets between
transmitters, and constant (but unknown) channel gaing distributed random adaptation
of the phases is shown to converge to coherence with pratyabite, for a vast range of
perturbation distributions, and the dynamics of the atpami are established. This analysis,

however, completely disregards the impact of noise in thevemence.

IV. DETERMINISTIC DISTRIBUTED BEAMFORMING

We here introduce a new energy-efficient phase synchramizptocedure, which belongs to
the family of deterministic algorithms [21], and which wendée as Successive Deterministic
Distributed Beamforming (SDDB). The power consumption tlusignaling for phase alignment
is drastically reduced with respect tolBF and to previous deterministic solutions. In this
algorithm, sensors transmit successively and indepelydéotn one another and the receiver
is thereby able to estimate each node’s signal separataljh Eensor only wakes up during
its assigned time slot to perform synchronization, whiletla¢ others remain in power-saving
mode. The goal for the receiver is to align the useful part adhereceived signal as closely
as possible to an arbitrary phase bias. Without loss of gdéitygerwe can set this phase bias to
be zero. The objective of the receiver is then to align theagyof all nodes to the real axis.
The procedure stops aftér slots, i.e., when all nodes have synchronized. Ideallynifrdinite
number of bits were available for the feedback, the recaigetd inform each node which exact
phase shift to apply to align perfectly to the real axis. W s¥iow that, in the absence of noise,
with as few as two bits of feedback (i.e., with four possiblage shifts), beamforming gains
within 1 dB of the maximum can be achieved. As mentioned earlier,aproach drastically
reduces the power consumption for the training procedutie respect to RBF and to previous
deterministic solutions. In the latter cases, in each titag 8/, = N, i.e., all sensors are always
active and transmitting beacons. These schemes potgraikgiv for cooperative transmission of

information even during the synchronization procedurel #rey are potentially more adaptive
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to time-dependent phase drift due to channel variationssoillator dynamics, but have larger
energy overhead. In SDDB, the synchronization stage anddbperative transmission stage are
disjoint, but N; = 1 in each time slot, meaning that network power consumptiantipge slot
is reduced by a factor aiv.

Each node is entitled to apply one phase shift, out of a preeléfieterministic set of possible

values, which depends on the number of feedback bits aleilse identify this set as
2
SK:{kx%,kzo,...,K—l} (8)

where K is the number of possible phase shifts, assumed to be a pdwaopi.e., K = 2°
whereb is the number of bits available for feedback. Alternatiyelye can constructVy, the

set of all possible beamforming weights for a givEn as follows:
WKé{wk:eﬂ'k%’“,kzo,...,K—1}. @)

Without loss of generality, we can assume that nodes getadeti in the same order as their
assigned index, i.e., at time slot, the mth node is the active node transmitting its beacon to

the receiver. The receiver then observes
r[m] = ejd)m + n[m] (10)

which is the down-converted and sampled version of the vedesignal defined in (1), when
N, = 1. Since we are focusing on the feedback decision in one péatitcime slot, which is
independent from all other time slots, for simplicity of atbn we drop the index:. Denoting
the useful part, i.e., the noiseless part, of the complegived signal byv, the received signal
r can be rewritten as

r=uv+n. (11

For a given feedback raté, the phase space is divided inf6 = 2° regions. LetD, denote
the kth region corresponding to all the phase value§dmwy, — /K |, Zwy + 7/K), where
Zwy, = 27k /K as defined in (9). It falls within Dy, the transmitted signal should be multiplied

by wy in order to be rotated back towards the real axis. The recewlethen sendb bits of
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feedback, communicating the phase shift that has to beeapi the node’s signal. Thus, the
phase rotationg, that the sensor should apply to its signal will have one efwhlues contained

in Sk, as given in (8). The new received phase for the synchrompei@ will then be:

VEY+ o (12)

where ¢ = —Zwy. At the end of the synchronization procedure, when all Ahewodes have

been synchronized, the final NRSS, according to (3) and &),be written as

N ~
§ 6]%
i=1

where the phases; are the received phases after synchronization.

. 1
Rkl = N 13)

V. ANALYSIS OF THE SDDB ALGORITHM
A. Noiseless Scenario
If the noise is negligibley can be estimated exactly. For a given the optimum beamforming
weight w;, out of the set in (9) is

Wy, = argmin ||v — wy|]*. (14)
wrEWK

By using this criterion, the beamforming coefficient withmmum angular distance from is

chosen, which gives the optimal quantized phase pre-cosagien to align the node to the real
axis. ForK = 4, this is graphically illustrated in Fig. 1(a), where regiooundaries are marked
with dashed lines. In Fig. 1(a), falls in Dy, hencew; will be chosen and> = —= /2. Without

noise, the synchronized phasesare independent and uniform iy, i.e., in [—7/K, +7/K).

This is because the unsynchronized phaseare uniform in[0, 27) and the decision in (14) is
noiseless, hence all the nodes will receive the correctnmétion relative to their beamforming
weight. This will then lead their synchronized phases to hdounly distributed around the
bias and to yield the best achievable RSS for a gikerThe performance is limited exclusively
by the resolutionk’, and it is therefore of interest to characterize how the NR8kaves as a

function thereof. The following result informs of that bela.
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Proposition 1: In the absence of noise, the expected value of the NRSS kelaave

E[U%N,Kﬂ:1—<1—%+%)6ﬁ—;2+o(%). (15)
Proof: See Appendix A.
Taking advantage of the fact that the number of nodes is ajlgitarge, we can further derive
a lower bound onE[|7?,N,K|] that is very tight for values oV of interest and exact foN — ~c.

Proposition 2: In the absence of noise, the expected value of the NRSS eatisfi

E[[Raxl] > E[R(Ryx)] (16)
= gsin (%) @an

where¥(-) denotes real part.

Proof: See Appendix A.

Indeed, since without noise the synchronized angles ar®ramy distributed around zero,
the corresponding imaginary parts cancel out\as> oco.

Fig. 2 compares the NRSS obtained through Monte-Carlo sitioul for increasingk’, with
its expansion in Proposition 1 and with the lower bound inp@sition 2. A number ofi(°
Monte-Carlo iterations has been considered to obtain tikeage NRSS for different values of
K. As can be seen, the lower bound is very tight alreadyNoe 100. Fig. 3 illustrates the
tightness of the lower bound in Proposition 2 with= 2, which is the worst case. Since we have
shown that the tightness increases with battand V, the bound becomes in fact exact if either
of them grows without bound. The plot in Fig. 3 representsdbkievable gain as a function
of N, i.e., the number of synchronized nodes. This shows whaatheevable normalized gain
would be if N5 nodes were transmitting, and it is obtained by multiplyia@)(by Ns/N.

Next, the second raw moment UEN,K| is characterized.

Proposition 3: In the absence of noise,

fffnt] = 5+ 5 (5) 9 (7). e

Proof: See Appendix B.

Using Proposition 3, the variance MEN,K| can be easily established.
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(a) K = 4 without noise. (b) K = 4 with noise.

Fig. 1. Example of phase quantization: usifig is equivalent to quantizing the phase spaceimegions.

NRSS for SDDB

NRSS [dB]

1 - = =Proposition 1
-4.5¢ O Monte Carlo ||
= Proposition 2
-5 I I T T
2 4 6 8 10 12 14 16 18 20

K

Fig. 2. Achievable NRSS with SDDB in noiseless conditionhwN = 100, as a function ofK: Monte-Carlo simulation

results compared with the analytical expressions in Pitipns 1 and 2.

B. Impact of Noise
When the noise term in (11) is not negligible, the receivel nave to choose, based on

the noisy received signat, as follows:

(19)

Wy, = argmin ||r — wg||*.
wrEWK
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Lower Bound for SDDB with K = 2

NRSS [dB]

O Monte Carlo ||
—— Proposition 2

20 40 60 80 100

Fig. 3. Lower bound for the achievable NRSS for SDDB whe€n= 2; expression (17) is usedy = 100.

However, since the actual goal of the receiver is aligninghe useful part of-, there will be
a non-zero probability of making an incorrect decision. &ing a wrong phase shift will not
yield the optimum NRSS that is achievable for a giv€n

1) Achievable NRSS for Finit&: Let us first investigate the effect of noise on the NRSS
when K is finite, which corresponds to the practical cases of caimstd capacity on the feedback

link. Invoking the polar representation
r= Ae’® (20)

the decision in (19) now depends exclusively@nlf © falls within D, the signal for the node

in question will be multiplied byw;. Clearly, this can lead to a wrong decision, as shown in
Fig. 1(b). Due to the noise, therefore, the synchronizegg@hare no longer uniformly distributed
and are not even necessarily withik. In this case, the distribution of the synchronized phases

and, as a result, the NRSS will depend on the received SNR.aMeedthe per-node SNR as
1
Y £ — (21)
o
and denote the SNR-dependent normalized resultariRRyc .. The result that follows is a

counterpart to Proposition 2, but with noise accountedAarin the noiseless case, the bound
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is tight for values ofN of interest and exact foN — oc.

Proposition 4: In the presence of noise,

A K
E [|RN7K,7|} > %/

4+ K-1

2
g cos (@b’ - k%) Py A (22)
k=0

wherepp, |y IS the probability tha® falls within D, conditioned toy being?’, namely

K
o
K

2
L

PDyJp=y = Prob{© € Dyl = ¢'} = /k b o Jolw=v(0)df (23)

where

fop=y (0) = %e"y {1 + 275 0=V /A cos (6 — o) [1 -Q <\/% cos(f — W)ﬂ } (24)

with Q(-) the Gaussian Q-function

400 2
Qx) & \/%/x e~ 7 dz. (25)
Proof: See Appendix C.

For v — oo, the right-hand-side of (24) becomes a delta functiofi at ¢/’ which reduces
(22) to the noiseless expression in Proposition 2 and, asiomexal at that point, the performance
becomes limited only by the finite granularify.

Particularly insightful is the analysis in the low- and h§NR regimes. The former is
representative of the conditions in which an actual senstwark necessitating of distributed
beamforming might have to operate, and the latter serves lagdge to the noiseless results
presented earlier.

Proposition 5: At low SNR,

. K . s
E |[Rycsl] 2 \/% sin () + (). (26)
Proof: See Appendix C.

Fig. 4 exemplifies the lower bound for the achievable NRS&émresence of noise féf = 2;
the exact expression in (22) is represented, together wsthow- and high-SNR expansions
respectively (26) and (17). Fig. 5 presents the same resulf= 4. In both figures, the curve

obtained through Monte-Carlo simulation is also repremgnThe average NRSS is considered
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NRSS [dB]
iR
e

<] Proposition 4]
O Monte Carlo

-18] ‘=% Proposition 5 |
—©— Proposition 2
_2 I L L T
-15 -10 -5 0 5 10 15 20
7 [dB]

Fig. 4. Lower bound for the achievable NRSS for SDDB figr = 2 as a function of the SNR with its approximations
for v+ — 0, shown in (26) andy — oo, shown in (17); the curve obtained through simulation i alspresented, witho®

Monte-Carlo iterations;N = 100.

for different values of SNR, ranging from15 to +20 dB. Except for very low SNR, the bound

is very tight. Fig. 6 compares the lower bound with Montei€aurves (0° trials) obtained
with different values of nodes in the networkj,, more specifically forN = 20, 50, 100, and

for K = 2. As can be seen, for values of SNR of relevance, such as teevah{—5, +5] dB,

the bound appears to be tight even for sméllnd smallK. Clearly, the bound becomes more
accurate as the number of nodes in the network increases7 Fgpresents angular histograms
for different values of SNR, and fak = 2. When the SNR is low, the phases remain spread out
because of the high probability with which noise prevenésréteiver from reporting the correct
feedback. At high SNR, in contrast, the final distributioriasly uniform over the correct slice

of the plane (forK = 2).

As can be appreciated, the combination of the low- and higR-@xpressions is valid over

a fairly wide range of SNRs.

2) Achievable NRSS fdtf — oo: With infinite resolution, the region®,, collapse to punctual

real phase values. There is no constraint on the capacitheffdedback link and thus the
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<] Proposition 4 [|
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=¥~ Proposition 5
—©— Proposition 2
T
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-15
[

Fig. 5. Lower bound for the achievable NRSS for SDDB fdr = 4 as a function of the SNR with its approximations
for v — 0, shown in (26) andy — oo, shown in (17); the curve obtained through simulation i akspresented, with0°

Monte-Carlo iterations)N = 100.

K=2

NRSS [dB]

-1 # N=20
Y N=50
-2 O N=100 i
<] Proposition 4
-22 I I I I T
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Fig. 6. Lower bound for the achievable NRSS for SDDB with= 2 as a function of the SNR compared with Monte-Carlo

simulations {0° trials) with different values ofV.
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(a) SNR= —20 dB (b) SNR=0 dB (c) SNR= +20 dB

Fig. 7. Angular histograms for SDDB with resolutidd = 2 for different SNR values.

performance is limited exclusively by noise. As it turns,dtts limiting behavior is approached
closely with modest values ot, which reinforces the value of the resulting expressions.

Proposition 6: The expected value Qﬂ%Nm,ﬂ satisfies

-/2

2[Rl 2 v (0(2) 4.(D) e

wherel,(-) and,(-) are the modified Bessel functions of first kind of ord@end1, respectively.
Proof: See Appendix D.

The low- and high-SNR behaviors with noise and infinite regoh are obtained by expanding
Proposition 6. At low SNR, the right-hand side of (27) belsaas

VT
ool (28)
while, at high SNR, it behaves as
_ 1
1+(1+e”)0<;). (29)

Fig. 8 compares (27), (28), (29), and the curve obtainedutihdvlonte-Carlo simulation. The
lower bound for the achievable NRSS is plotted as a functioth® SNR. It can be seen that
(28) closely matches (27) below roughlyp dB while (29) closely matches it above rougtily
dB.
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NRSS [dB]
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O Monte Carlo

—¥— Expansion fory - 0

—©— Expansion fory - o
T T
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Fig. 8. Achievable NRSS for SDDB wheR — oo as a function of the SNR expressed in (27), and its approiomstfor
v — 0, expressed in (28), angl — oo, expressed in (29); the curve obtained through simulasoalso represented, wittd®

Monte-Carlo iterations;N = 100.

VI. PERFORMANCE COMPARISON. RANDOM V. DETERMINISTIC

In this section, we compare thelBF and the SDDB approaches both without and with
noise. The curves again are the result of Monte-Carlo sitimm@ampaigns with0° iterations.
A network of N = 100 nodes is considered, and the initial phases prior to symitation are

modeled as uniform in0, 27).

A. Noiseless Scenario

In Fig. 9, the noiseless performance of the random algori{RtBF, cf. Section lll), is
illustrated in terms of the NRSS improvement over time. A daw of 450 time slots is
considered. The distribution for the random shifts-) is uniform in[—= /3, +7//] for everyi,
and the curves for distinct values gfare shown. As can be seen, a larger variance allows for a
very rapid NRSS increase in the initial stages, but at theepof a slow eventual convergence. In
contrast, smaller variances yield a very low initial growéte, in return for faster convergence

as the NRSS approaches its maximum. Authors in [1] show hoadaptive behavior improves
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Random 1 Bit Feedback Synchronization

NRSS [dB]
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o

T

L L L L L L
0 50 100 150 200 250 300 350 400 450
time slots

Fig. 9. NRSS for RBF without noise, withV = 100, and f5, (-) uniform in [—x /3, 4+ /3] for everyi.

convergence. In this case, nodes can adjust the variante aligtribution, optimizing it at each
iteration according to the NRSS value. But this approaclrastally unfeasible since it would
require the nodes to have full knowledge of the NRSS at eagh, stind thus the receiver to
send a much higher-rate feedback. By considering the \@iai this distribution to be fixed,
we relate to a more practical and realistic case.

Fig. 10 is related to SDDB without noise (cf. Section V-A)epenting the NRSS as a function
of the number of activated and synchronized devidégy|, as given in (4). The plot can also be
interpreted as a function of time, since nodes are synchednsuccessively (one per time slot)
and thus the curves indicate the NRSS that would be attainéuetactivated nodes after a certain
number of rounds. The first value of each curve correspondssiogle-node transmission, and
the last value §sm] = N) is the NRSS achieved when the complete network is beamifigrmi
The different curves correspond to different resolutioi's,When the receiver can only send
one bit of feedback{ = 2), the achievable NRSS isdB away from the maximum achievable
value. Whenk = 4, the attainable NRSS is withindB of the maximum. AgK" increases even
further, the improvement becomes minute. Hence, the mstanet cases ara)(K = 2, when

the feedback rate i bit and a fair comparison with BBF is possible,i{) K = 4, which shows
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Fig. 10. NRSS for SDDB without noise, with paramef€r N = 100.

that by simply adding one more feedback bit, SDDB yields Jegh gains after onlyV time

rounds, andiii) K — oo, which approximates well all the remaining valuesrof

Fig. 11 presents a noiseless comparison betweHBFRand SDDB. The graph depicts the
NRSS as a function of time (for SDDB, recall, the NRSS at amitrme slotm indicates the
NRSS achieved byn synchronized nodes). ThelBF curves correspond to different values of
5, and the curves for SDDB represent the cakes 2 and X' = 4. During the first time slot, all
the unsynchronized nodes il BF yield an initial normalized gain af/+/N. For SDDB, in turn,
the initial gain corresponds to a single-node transmisdidith one bit of feedback, SDDB starts
outperforming RBF after50 time slots and it becomes roughlydB better afterl00 slots. This
comparison is fo = 4, which is the best choice forIBF in this time frame. This improvement
comes with an increase of network coordination with resped®l1BF. Nodes in fact have to
be indexed and they must transmit in a predefined order. Ingecan be done once, when the
network is deployed. Transmitting in turn can be achievethaitoken passing mechanism, or
the feedback itself could trigger the progressive awalgmheach sensor. At the price of an

extra feedback bit, SDDB starts outperformingB® after only30 time slots, becoming roughly
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8 dB better afterl00 time slots. In addition, recall, SDDB has anfold power saving factor per
time slot. A time frame of an order of magnitude larger is egpl for RIBF to achieve gains
comparable to the ones achieved by SDDBLi time slots. As mentioned in Section Il, in
practical scenarios the phase of each local oscillatotsdoifer time, causing progressive carrier
misalignment and consequent loss in terms of beamforming ath oscillator dynamics and
frequency mismatches due to imperfect carrier synchrtinizhave to be taken into account and
properly modeled to identify the time interval within whigasi-static oscillators’ phase can be
assumed, identified as Oscillators’ Coherence Time (OCHhg OCT interval then determines
the rate of periodic phase re-synchronization in order tontaen tracking, according to the
level of tolerance of the application. The problem of maadglphase drift has been studied, for
example, in [36] and [11]. In both these works, the drift isdaled as a non-stationary Gaussian
process with zero mean and a time-dependent variance. §tanie, in [11] the time-dependent
variance of the drifto3(¢) is expressed asi(t) = cAt, wherec is a parameter dependent
on the physical properties of the local oscillator and is sneed in rad x Hz, and At is the
considered time frame in seconds. This model is based on ol w [37]. As stated in [11],
for low-cost radio-frequency oscillators, parameteranges froml to 20 rad® x Hz. Taking

¢ = 10 as the typical drift parameter, for a network 8f= 100 nodes, it can be verified that the
beamforming gain experiencesbadB decrease with respect to the value achieved after phase
synchronization, in a time frame @00 ms. Clearly signals continue experiencing misalignment
during the synchronization procedure itself, hence, rednof convergence time is mandatory,
and this is exactly the issue we address in this work. Moreavieen phase drift is severe, or
when the size of the network is so large that carrier syndhadion requires long time spans,
adaptive tracking methods can be employed, such as the ogeesed in [21], [22], which
have been proven to be very robust against channel drifteStime statistics of the phase drift
are known, ad hoc phase re-alignment routines can be tditor¢he application requirements.

These are all very interesting points that pave the way farréudevelopments of this work.
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R1BF v. SDDB

. O p=2
-30 ,:( * B=4 |
. * B=20
-35 2 B=50
2: O K=2
,,’ K=4
420" 10 10° 10°

Time Slots

Fig. 11. Noiseless comparison betweefBR and SDDB, with different shift distributions for IBF (fs,(-) uniform in
[—7/B,+m/B] for everyi), and K = 2, 4 for SDDB; N = 100.

B. Noisy Scenario

Fig. 12 represents a comparison (through simulation) betwkee RBF and SDDB schemes
when the SNR is low, specifically dB, which corresponds te? = 1, in a time frame of103
time slots. As in the noiseless case, SDDB outperforrBmR although the gap between them is
somewhat smaller. Still, in order forlBF to achieve a gain comparable to what SDDB achieves
in 100 time slots, a time frame of an order of magnitude longer isiiregl. The RBF curves
are for 5 = 4, 10, 20, respectively, whereas the SDDB curves are Kok 2 and K = 4. After
80 slots, SDDB with one feedback bit starts outperformind@R with 5 = 4, which is the best
performing one, and the gap aftei0 time slots is roughly dB. With two bits of feedback, the
crossover occurs after less tham slots and the gap afta00 time slots increases to roughly
5 dB.

VIlI. CONCLUSION

We have presented a new phase-alignment algorithm forilisdd beamforming. This

algorithm can be regarded as a member of the family of detestid algorithms initiated in
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R1BF v. SDDB, SNR = 0 dB
0 T T

35
-30F : =44
A * B=20
B =50
351 - =50 )
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—402 ‘ ‘
10° 10" 10> 10°
Time Slots

Fig. 12. Simulated comparison betweehBF and SDDB in the presence of noisg; (-) uniform in [—x /8, +m /] for every

i; N = 100.

[21]. Based, as previous deterministic algorithms, on aadieloop procedure involving feedback
from the receiver, its main novelty lies in its sequentialune: each node transmits only once
throughout the entire alignment process and hence the poovesumption scales withv. This
drastically reduces the power consumption with respectlitexasting solutions (deterministic
and random), where each node must transmit repeatedlyghoot the process, thereby scaling
the power consumption wittv2. This advantage might be crucial for boosting the life spfn o

a sensor network.

In contrast with most previous analyses of distributed Heaming, in this paper noise has
been brought explicitly into the models. Analytic express that characterize the performance
of the new algorithm, without and with noise, have been puthfowith emphasis on various

limiting regimes of interest.

The performance of the new algorithm has been compared sigdiose of the schemes
hitherto formulated, and it has been shown to converge rfabn random algorithms with
identical feedback rate and as fast as all other deterndraggorithms. In both cases, recall,

this is achieved with drastically less power consumption.
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APPENDIX A

PROOF OFPROPOSITIONS1 AND 2

For notational compactness, let us define

1L .

T = N ; CoS 1; (30)
N ~

Yy = N Z sin ’(/)z (31)

=
—_

wheredy, ..., 4y are independent and identically distributed uniformlylinr/ K, +7/K) and
the NRSS is simply/xz2? + y2. For K — oo, clearlyz — 1 andy — 0. Thus, we expand the
NRSS around: = 1 andy = 0 obtaining

1
Vat+yr=x+ ;yf — gxyf + §x2y2 + 0 ((x — 1)3) + O ((x - 1)3) v + 0 (yg) . (32

We now take expectations ovef, ..., 1y. For the first term in (32),

+% +% N
E [z] :/ (% ZCOS&) Foyoin (E1y oo EN)dSL -+ - dén (33)
i=1

1 (K\Y [t& (&
=% <%) /_K /_K (;(308&) déy - déy (34)
2 1
:1—&—%0(@). (36)

+% +% N 2
EW- ), <%25> o€ ) dn (BT

L (ENY R R (T 2
:m(%) - <Zsin§i> dgy - - - déy (38)

K T 1 . 2
= 9N (? ~gsin (?)) (39)
w2 1
= aNkz O (?) (40)
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and, for the third term,

N

2 (1 & 1 2
E [zy’] / . e . (NZCOS&) (NZSMZ)f@zl...%@l,...,&md&---di (41)

4+ N
Y [ () () e
K T N—-1K? . T T 1 . 2
=5 () + 5 5 () <E — s ( ® )) 43)
? N-1 72 1
B e T R (ﬁ) (44)

Finally, the fourth term in (32)

7\'

N otz +z [N 2/ N 2
:%(%) / cosg,) (Zsmg,) d, - - - déy (46)

1=1

_ K 4w (am\\ N-1K® (w1, (on
“3nd \ Kk M\ K N3 472 \ K2 4”‘ K

S 2
/l / ( ZCOS§2> Zan@) fin wN<£17"'7£N>d£1"‘d§N (45)

LAN-1 (K 2'4<7r>
e — [ S JR—
3 N3 \27) "M \K

(N—1)(N—=2) (K\’ /7N (m 1 _ (2«
+ 2 e oy 4 sin <?> 17 ism N 47
2 N—-17* N-1 72 (N—-1)(N-2) =2 1
= 2 — 48
3K2N® N 3K NS 3KE NS 3K? +0<K2) (48)

By putting together (36), (40), (44), and (48), the expéatabf (32) gives (15). This proves
Proposition 1.

Proposition 2 follows from neglecting the imaginary part%&,;{, in which casdE[|7A€N7K|]
is given directly by (35).
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APPENDIX B

PROOF OFPROPOSITION3

The second raw moment 4JIA€N7K| equals

. = 2
E[mmﬁ] :/_+K .../_+K (%Zcos&) Fiin (61, EN)dEL -+ dy

2
+I +
+/ / <%Zsin§i> f@l..q[w(&,...,fN)d&-..dgN (49)

N

N iR R i
— % (%) i /_ <ZCOS&> dgy -+ - déy
K\N % +5 (N ?
4 % <%) /_ .. /_ (Z sin @) d&y - -déy. (50)

K (2« 1 K\N°’N-1 _,/=x
4wNSln(f)+ﬁ+<?) oo () (1)

whereas the second term in (50) was already evaluated in maippd, Eqg. (39). The result

equals the claim of Proposition 3.

APPENDIX C

PROOF OFPROPOSITIONS4 AND 5
Let us lower bound[|Ry k- |] with E[R(R . x.,)] by first finding the distribution oB. The
received complex signal in (11) can be written as
r = cost + ng + j(siny + ng) (52)

where, if z is a complex scalar;y and zg represent its real and imaginary part, respectively.
For a giveny) = ¢/, ¢ andrg are independent Gaussian random variables with variah¢e

and mearcos v’ andsin)’, respectively. The PDF aof conditioned oy = ¢/ is
’ = 1 —v((pr —cos ') 2+ (pg—sinp’)?) -
Frip=y(p) = —e . (53)
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Based on (53), the joint PDF of and©, conditioned on) = v/, is then [38]
Faopsey (a,0) = Lae e +1-2acos(0-v") 54
T

and, integrating oves, we obtain the marginal PDF @& conditioned ory) = ¢’ as

+o00
fopp=y (0) = fae=y(a,0)da (55)
0
Y 22 ’ oo n\2
— Leysin®(6—¢ )/ ae~a—cos(6=¢")* 1. (56)
™ 0

The integration in (56) gives (24). The result in (22) repr&sE[éR(?@N,Kﬁ)] because of the
following: for a givent’, depending on the noise realization, the received signgl fal in
any of the K different regions. If© falls within Dy, a phase shift oRrk/K will be applied
to the signal, and the phase of its useful part wille— 27k/K. Hence, the useful part of
each node’s signal becomes a weighted sumikotosines, whose phases aré— 27k/K,
for k = 0,..., K — 1, and whose weights correspond to the probabilitycotbeing in the
corresponding decision regidn,. The expression is then averaged according to the distribut
of ¢ that we consider uniform ifi—-7 /K, +7/K). Due to the symmetry of the system, this is
equivalent to considering uniformly distributed in any of thex regions. Proposition 4 is thus

proven.

For low SNR, (24) expands as

) 200 — oY) —
forwms(8) = 5+ TG B OE = o) o)

and, plugging (57) into (23), we obtain

1 v k2x v o (27 kdr
PDualy= = I + \/;sm (E) cos (W — 7) + 5, Sin (?) cos <2¢’ — 7) + o(7).
(58)
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By using (58) in (22), we obtain:
A 1. /7y e 2k ~NK . o/m . (2
E [|RN,KW|} 2; sin (?> Z oS (7) + \/;—7T sin (E> {47‘(‘ + 2sin <?)
~K_lcos (%—ﬂ) } + K sin (2—7T) K_lcos <2k—ﬂ) [3 sin (1>
o K 1272 K —~ K K

+ sin (3%) (2 cos (4’%) _ 1) } +o(v). (59)

Expression (59) can be simplified by observing that, for wver

K-1

K—1
21k 1 gk o
2 cos <%) =5 Z (ej% + 6_3%)

11— n 1—e 927
C2\1—eF  1-eF
0

(60)

This is also valid for the summation obs(4k7/K) terms in (59). Hence, the coefficients that

multiply the terms of order8 and1 in the expression (59) are always zero, and this simplibeati

yields (26). This proves Proposition 5.

APPENDIX D

PROOF OFPROPOSITIONG

Without loss of generality, we can fix = 0, which is equivalent to fixing any other value in

[0, 27). With thatr = 1 4+ n and (53) becomes

Fripmo(p) = Lem (om0 408 61)
T

from which f4 e4=0(a, ) in turn becomes

a — a —2Qa COoS
fA,@\qp:o(Cl, 9) = ;76 (a2 +1-2 0) (62)
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and the distribution o® conditioned ony = 0 is given by

+oo
ferp=o(0) = i faela,0)da (63)
_ 0 —ysin®6 /+OO —y(a—cos 0)?
e ae a. (64)
T 0
The integration in (64) gives
1 cos? 0
fojp=0(0) = 7€ 7 {1 + 2¢” /Ty cosd [1 -Q <\/ZCOS 9)] } : (65)
In order to de-condition (65), the following integrationncbe carried out:
+m
fo(0 —4")o(y")dy" = fo(0) (66)

because) is conditioned to having a punctual deterministic valuej aence its distribution is
a delta function.

The first raw moment of the real part & .., can be written as
+m

E[é}% (QN,W)] _ / cos 0 fo(6)d6. (67)

—Tr

This derives from the fact that the node will rotate its vearactly by, which is the phase
observed at the receiver. As a consequence, instead ofmgigain the real axis, as it would
if the feedback were correct, its phase is centered on zetto digtribution fo(-). In order to

integrate (67), we proceed as follows: reordering the tam(§5), we write

L Y —ysin2o | _ysin?6
—_ Y _ 7y Sy I _ 7 sin
fo(0) 5-¢ T ¢ cos 6 + ypm (1 209(4/2 cos 9)) e cos  (68)
and we then define the integrals

1 tr
I, & —6_7/ cos 0df (69)

2m .
R R
I, & —/ e 75170 cos? §dh (70)
A J_.

+7
I3 2 /41 / (1 —20Q(y/2vcos 9)) eSO 682 0 df) (71)
T™J)-n

such that (67) is simpl\Z; + Z, + Z3. Obviously, (69) is zero and (71) is also zero because
the integrand is an odd function fér € [—=,+x). In turn, (27) admits the closed form that

constitutes the claim of Proposition 6.
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