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Abstract

This paper presents a new deterministic closed-loop phase-alignment algorithm based on quantized

feedback from the receiver for distributed beamforming. Incontrast with previously proposed methods,

which entailed repeated transmissions from all the nodes inthe network, this new algorithm requires

each node to transmit only once during the synchronization cycle. This drastically reduces the amount

of power consumed to achieve phase alignment, yet the new algorithm converges at least as fast as all

other existing schemes. In contrast with previous analysesof distributed beamforming based on random

phase updates, where noise had been disregarded, here it is explicitly included in the models and shown

to have a considerable effect that cannot be ignored. With and without noise, analytical expressions that

characterize the performance of the new algorithm are provided, with emphasis on various limiting

regimes of interest.
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I. INTRODUCTION

Distributed beamforming is a cooperative communication technique that enables a cluster of

sensors to emulate a virtual antenna array, allowing for directed message delivery to the intended

destination. In other words, nodes pool their antenna resources and synchronize their radio trans-

missions so that they coherently aggregate in a desired direction in space yielding power gains

proportional to the number of cooperating devices. Moreover, beampattern shaping is beneficial

for reducing interference towards/from unintended terminals, and favors the implementation of

Space Division Multiple Access (SDMA) schemes which allow the network to spatially multiplex

different streams of data for independent receivers.

A possible application is in wireless sensor networks, which must comply with strict energy-

efficient policies with a view on maximizing the system’s life span. Sensors are power-restrained

devices that survive on limited battery supplies that typically cannot be recharged. Single-node

communication happens to be highly inefficient, since the signal transmitted from a typically

low-cost isotropic antenna is undirected and, consequently, only a fraction of the transmitted

power becomes useful for communication purposes. Moreover, the transceiver is the most power-

consuming element in a sensor, thus a more efficient use of this resource is desirable. Under

these circumstances, collaboration comes as a compelling solution when a common message,

usually the result of a sensing campaign, must be relayed to areceiver. Potential gains achievable

with distributed beamforming, in fact, enable cooperatingsensors to back off their powers when

transmitting information.

Clearly, for a cluster of distributed nodes, emulation of a virtual array is not trivial. As

opposed to a centralized scenario, where all elements naturally share a common phase and

frequency reference, and a regular geometry guarantees tight control on the relative phase shifts,

this distributed setup faces new challenges. Each node has its own, independent local oscillator

with random initial phase as well as phase noise, and sensor locations are typically unknown.

Distributed phase-alignment procedures are thus requiredin order for the network to be able

to steer a beam in the desired direction in space. This scenario has attracted the attention of
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many researchers, that have tackled various aspects of thisproblem from different perspectives

by designing algorithms for phase alignment [1]–[22], by studying the properties of average

beampatterns created by nodes randomly distributed in space through the theory of random

arrays [23]–[28], and by providing node selection procedures that sort transmitters on the basis

of their mutual phase alignment to efficiently create an array out of a useful subset of nodes

[29]–[32].

A. State of the Art

All works in [1]–[22] tackle the phase alignment issue for successful beam steering. They

evaluate the performance in terms of the improvement of the Received Signal Strength (RSS),

i.e., the intensity of the useful part of the aggregate signal at the receiver, as the distributed

synchronization procedure unfolds. In other words, the aimof these algorithms is to enable the

network to steer a beam in the desired direction in space by successively adjusting the phase

of the transmitted signals according to the policy dictatedby the algorithm. Clearly, the faster

the received signals achieve coherence, the better in termsof energy consumption since less

signaling is required for synchronization.

In [1]–[4] a closed-loop, distributed, and iterative phasesynchronization procedure, called

Random1-Bit Feedback (R1BF) algorithm, is presented. Nodes apply, independently from one

another and simultaneously, random phase adjustments to their signals. On the basis of one bit

of feedback from the receiver, which informs the network if the set of random perturbations has

improved or worsened the RSS, the nodes decide whether to maintain or discard the introduced

phase shifts. This randomized process is carried out until the received phases achieve a desired

level of coherence. Authors in [1] show that, for a wide variety of probability distribution

functions (PDFs) for the phase adjustments, the procedure leads to asymptotic coherence with

probability one. An analytical framework is provided in [5]to analyze the convergence of

the R1BF algorithm by considering it as a random search algorithm.In [6] and [7], a signed

variation of the R1BF algorithm is introduced to improve convergence: if nodesreceive a negative

feedback, they change the sign of the tested phase shifts andapply them before starting a new test.
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A further enhancement of this method is described in [8], where, in case of positive feedback,

the nodes insist on applying the successful shift until the signal starts worsening again, and in

case of negative feedback, they adopt the same strategy but by inverting the sign of the shift.

In [9] this application is extended to a multiuser scenario,whereM separate clusters of nodes

have to communicate withM distinct receivers. In this work, distributed beampatternshaping

is used to implement SDMA schemes: the network is divided into M sub-clusters of nodes that

have to multiplexM independent streams of data toM non-cooperating receivers. New versions

and improvements of R1BF are also contained in [18]–[20]. A feedback based synchronization

procedure is also introduced in [10]. Here, the received signal is considered as composed by

a sum of complex signals, each one relative to the aggregate transmissions from a sub-cluster

of nodes. The receiver estimates the magnitude and the phaseof the signals relative to each

cluster, and the objective is to align these signals in phase. As opposed to the R1BF algorithm,

the feedback is based on the complex signal, and not only on the magnitude, and it is directed

to subsets of nodes.

In our previous works, [21], [22], with a view on reducing thetime to synchronize with respect

to the random approach, we proposed an iterative closed-loop procedure, still based on quantized

feedback from the receiver, but built on a deterministic phase update strategy. In this approach,

nodes take turns in performing phase tests, and they are onlyallowed to test a particular number

of predefined phase shifts. The receiver performs successive RSS measures for each node (one

for every possible phase adjustment), and sends a bit of feedback for each of these measurements.

The node will then apply the phase shift that has yielded the best RSS improvement. Simulation

results provided in [21], [22] show how the deterministic strategy outperforms the random one

in terms of convergence time both in static and time-varyingchannel environments.

Other relevant contributions in this area are [11]–[17]. A time-slotted closed-loop procedure

for carrier synchronization is presented in [11] and [12]. An interesting blind zero-feedback

distributed beamforming is presented in [13]. Here, the natural misalignment of the carriers is

exploited to reach a suitable set of beamforming gains. A half duplex amplify and forward relay

network is considered in [14]: an adaptive beamforming scheme based on predefined sets of
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deterministic perturbations of the beamforming weights driven by a one-bit feedback from the

receiver is presented. Authors in [15] analyze the problem of distributed beamforming from an

information-theoretic point of view, providing a lower bound for the time required to achieve

phase coherence at destination in a binary signaling case. In [16], a method for carrier phase

and frequency synchronization is presented in case of a two-transmitter cooperation scheme.

It is shown how this method is also robust to mobility of the terminals. In [17] a closed-loop

phase tracking routine based on Code Division Multiple Access is proposed to achieve coherent

combining of signals transmitted from a cluster of distributed antennas. The effect of partitioning

the transmitted energy between synchronization symbols and data packets is investigated, by

observing its impact on the data bit error rate. In addition,practical implementations of distributed

beamforming have been proven to be effective, [33], feasible, and implementable on commodity

hardware with low-quality oscillators [34].

B. Our Contribution

Our focus is on distributed synchronization schemes that rely on a low-rate quantized feedback

from the receiver [1]–[10]. Surprisingly, given that the defeat of noise is the main driver of

distributed beamforming, the impact of noise in these schemes has been ignored. The first

attempt to consider the impact of noise has been made in [35],but this analysis does not quantify

the actual performance of these schemes when the synchronization process is hindered by this

impairment. In this work, noise is incorporated into the model and shown to have a considerable

effect that simply can not be ignored.

A new algorithm, more energy-efficient than its predecessors , is proposed and its performance

is analytically characterized, with and without noise. Comparisons with existing alternatives are

also provided, with and without noise. Specifically:

• We put forth a new deterministic algorithm that relies on low-rate feedback to successively

align the phases of the transmitters to an arbitrary bias selected by the receiver. This

algorithm converges faster than existing random schemes and with less energy consumption

than previous deterministic solutions.
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• The performance of the new algorithm is analytically characterized in the absence of noise.

This characterization enables bench-marking against previous random solutions, which were

all evaluated only in noiseless conditions.

• The analytical characterization of the new algorithm is extended to incorporate the impact

of noise, with emphasis on the low- and high-power regimes. The former embodies the

conditions in which a distributed beamforming system wouldmost likely have to operate

whereas the latter serves as a bridge with the noiseless analysis. The analysis sheds light

on the interplay between the number of sensors, the signal-to-noise ratio (SNR), and the

feedback rate.

• The performance of the new algorithm is compared against that of random schemes. Since

the analysis of random schemes appears unwieldy in the face of noise, the performance is

determined via Monte-Carlo.

The remainder of the manuscript is organized as follows: thegeneral system model is described

in Section II, the random noiseless synchronization approach is illustrated in Section III, and

Section IV describes the deterministic synchronization procedure. The analytical insights related

to the latter are provided in Section V both in the absence andpresence of noise (in Section

V-A and Section V-B, respectively). Finally, Section VI features a comparison between the new

algorithm and the random one and Section VII concludes the paper.

II. GENERAL SYSTEM MODEL

In the next sections, we will be discussing two synchronization algorithms, the R1BF algorithm

from [1] and our proposed algorithm. In this section, we present the general system model that

is common to both algorithms. We will then adapt this model toeach particular algorithm in its

corresponding section.

The following assumptions are made, in line with previous works on phase synchronization:

• Nodes are unaware of their own locations, of the position of the receiver, and of channel-

state information (CSI).

• All devices are equipped with an isotropic antenna.
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• All sensors transmit at the same power.

• Since the receiver’s distance is considered to be much greater than the radius of the network

itself, path losses are considered to be the same for all nodes.

• There is no multipath and thus the effect of the channel amounts to a phase rotation, random

and static for each node. This could represent, for instance, situations where the receiver is

a satellite or an elevated cell site1.

• All nodes are locked to the same carrier frequencyfc, and frequency drift is considered

negligible2. Hence, the phase shift of each local oscillator is also static and modeled as

uniform in [0, 2π).

• Sensors share a common time reference, i.e., time synchronization is present throughout the

whole network.

In order to steer a beam towards the receiver, each transmitter should multiply its signal by an

appropriate complex beamforming weight to compensate for both the channel rotation and the

misalignment due to the local oscillator’s phase offset. Ifeach node had access to global CSI, the

optimal beamforming weights could be locally computed and the signals would perfectly align

in the target direction. In a distributed setup however, obtaining full CSI may not be feasible. To

bypass this obstacle, we consider iterative closed-loop synchronization procedures where each

transmitter can locally adjust the phase of its signal basedon a low-rate feedback it receives

from the destination. The phase adjustment is equivalent tomultiplying the signal by a complex,

unit-magnitude beamforming coefficient with a properly-selected phase. The type of feedback

and the type of local phase adjustments depend on the chosen synchronization protocol.

Let Na be the number of active devices in a given time-slot. The channel phase rotation and

1This assumption can be relaxed, since the results are still valid when static fading is introduced in the model. Its impact

translates into a static offset of the average beamforming gain with respect to the equal gain combining case, which depends

on the statistics of the considered fading distribution.

2A frequency offset will actually be present, and this translates into a maximum time window within which phase coherence

can be assumed to be maintained. Loss of coherence has a detrimental effect on the beamforming gain, and this calls for

re-synchronization. This thus becomes a requirement on maximum convergence time [21].
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the phase offset of the local oscillator for nodei are absorbed into a single variable,ψi. In turn,

the phase rotation that each transmitter has applied to its signal at timet is denoted byφi[t].

During synchronization, nodes transmit unmodulated carriers (beacons), so the complex signal

at the receiver is given by

r(t) = ej2πfct
Na
∑

i=1

ej(ψi+φi[t]) + n(t) (1)

wheren(t) is a complex Gaussian random variable, with mean zero and varianceσ2, representing

the noise at timet. The value ofNa is fixed throughout the synchronization.

After down conversion and sampling, at the end of time slotm the resultant complex vector

relative to the useful signal is

R[m] =

Ns[m]
∑

i=1

ej(ψi+φi[m]) (2)

whereNs[m] is the number of nodes that have been synchronized up to time slot m. The only

component in this expression that is locally tunable by eachtransmitter is the phase of the

beamforming weight. The RSS at the end of time slotm, given the superposition ofNs[m]

carriers, is simply

|R[m]| =

∣

∣

∣

∣

∣

∣

Ns[m]
∑

i=1

ej(ψi+φi[m])

∣

∣

∣

∣

∣

∣

. (3)

We define the RSS normalized to the total number of nodesN in the network as

|R̂[m]| , |R[m]|
N

(4)

and we dub it normalized RSS (NRSS). The NRSS is maximized when ψi+φi[m] = Υ[m], ∀i,
whereΥ[m] is an arbitrary constant. The objective is to adjustφi[m] in order to obtain an optimal

set of beamforming weights that result in received signal phases that are as close as possible to

this condition of coherence.
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III. N OISELESSRANDOM DISTRIBUTED BEAMFORMING

The authors in [1] present a random procedure for phase synchronization, called R1BF,

ignoring the noise term in (1). According to an iterative paradigm, at the beginning of each

time slot, all sensors simultaneously apply a random and independent phase adjustment to their

carriers. On the basis of a one-bit feedback from the receiver, they decide whether to maintain or

discard the introduced phase shifts: the feedback is a“keep” signal if the set of phase adjustments

has improved the RSS, or a“discard” signal otherwise.

Assumingφi[m − 1] is the best known carrier phase at theith sensor at time slotm, each

transmitter applies a random phase adjustment denoted asδi[m], taken from a predetermined

PDFfδi(·), striving for a potentially better phase. The applied phaseincrements are independent

over time and across nodes. The tested phase for theith node at time slotm is then

φtest
i [m] = φi[m− 1] + δi[m]. (5)

The corresponding RSS,|R[m]|test, is given by (3), replacingφi[m] with φtest
i [m] and Ns[m]

with N . The receiver measures|R[m]|test and sends a feedback signal indicating whether the

introduced phase shifts have improved the quality of the signal or not, i.e., if|R[m]|test is greater

or smaller than|R[m− 1]|, which is the best value for the RSS up to time slotm. The update

process forφi[m] can be summarized as follows:

φi[m] =







φtest
i [m], |R[m]|test> |R[m− 1]|
φi[m− 1], |R[m]|test ≤ |R[m− 1]|

(6)

The value for the record of the best observed RSS is also updated as

|R[m]| = max (|R[m]|test, |R[m− 1]|) (7)

This procedure is iterated and stops only once the RSS has reached a particular threshold

value. Phase synchronization is thus achieved in a completely distributed fashion. No network

coordination is required, and the receiver only has to estimate the strength of the aggregate of

all the signals.
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In [1], authors develop an analytical framework to characterize the behavior of the RSS as

R1BF takes place. This elegant analysis considers the settingdescribed in Section II, where

carriers are synchronized in frequency, with constant (butunknown) phase offsets between

transmitters, and constant (but unknown) channel gains. The distributed random adaptation

of the phases is shown to converge to coherence with probability one, for a vast range of

perturbation distributions, and the dynamics of the algorithm are established. This analysis,

however, completely disregards the impact of noise in the convergence.

IV. DETERMINISTIC DISTRIBUTED BEAMFORMING

We here introduce a new energy-efficient phase synchronization procedure, which belongs to

the family of deterministic algorithms [21], and which we denote as Successive Deterministic

Distributed Beamforming (SDDB). The power consumption dueto signaling for phase alignment

is drastically reduced with respect to R1BF and to previous deterministic solutions. In this

algorithm, sensors transmit successively and independently from one another and the receiver

is thereby able to estimate each node’s signal separately. Each sensor only wakes up during

its assigned time slot to perform synchronization, while all the others remain in power-saving

mode. The goal for the receiver is to align the useful part of each received signal as closely

as possible to an arbitrary phase bias. Without loss of generality, we can set this phase bias to

be zero. The objective of the receiver is then to align the signals of all nodes to the real axis.

The procedure stops afterN slots, i.e., when all nodes have synchronized. Ideally, if an infinite

number of bits were available for the feedback, the receivercould inform each node which exact

phase shift to apply to align perfectly to the real axis. We will show that, in the absence of noise,

with as few as two bits of feedback (i.e., with four possible phase shifts), beamforming gains

within 1 dB of the maximum can be achieved. As mentioned earlier, thisapproach drastically

reduces the power consumption for the training procedure with respect to R1BF and to previous

deterministic solutions. In the latter cases, in each time slot, Na = N , i.e., all sensors are always

active and transmitting beacons. These schemes potentially allow for cooperative transmission of

information even during the synchronization procedure, and they are potentially more adaptive
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to time-dependent phase drift due to channel variations or oscillator dynamics, but have larger

energy overhead. In SDDB, the synchronization stage and thecooperative transmission stage are

disjoint, butNa = 1 in each time slot, meaning that network power consumption per time slot

is reduced by a factor ofN .

Each node is entitled to apply one phase shift, out of a predefined deterministic set of possible

values, which depends on the number of feedback bits available. We identify this set as

SK =

{

k × 2π

K
, k = 0, . . . , K − 1

}

(8)

whereK is the number of possible phase shifts, assumed to be a power of two, i.e.,K = 2b

whereb is the number of bits available for feedback. Alternatively, we can constructWK , the

set of all possible beamforming weights for a givenK, as follows:

WK ,

{

wk = ej k
2π

K , k = 0, . . . , K − 1
}

. (9)

Without loss of generality, we can assume that nodes get activated in the same order as their

assigned index, i.e., at time slotm, themth node is the active node transmitting its beacon to

the receiver. The receiver then observes

r[m] = ejψm + n[m] (10)

which is the down-converted and sampled version of the received signal defined in (1), when

Na = 1. Since we are focusing on the feedback decision in one particular time slot, which is

independent from all other time slots, for simplicity of notation we drop the indexm. Denoting

the useful part, i.e., the noiseless part, of the complex received signal byv, the received signal

r can be rewritten as

r = v + n. (11)

For a given feedback rate,b, the phase space is divided intoK = 2b regions. LetDk denote

the kth region corresponding to all the phase values in[∠wk − π/K , ∠wk + π/K), where

∠wk = 2πk/K as defined in (9). Ifr falls withinDk, the transmitted signal should be multiplied

by w∗
k in order to be rotated back towards the real axis. The receiver will then sendb bits of
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feedback, communicating the phase shift that has to be applied to the node’s signal. Thus, the

phase rotation,φ, that the sensor should apply to its signal will have one of the values contained

in SK , as given in (8). The new received phase for the synchronizednode will then be:

ψ̃ , ψ + φ (12)

whereφ = −∠wk. At the end of the synchronization procedure, when all theN nodes have

been synchronized, the final NRSS, according to (3) and (4), can be written as

|R̂N,K | =
1

N

∣

∣

∣

∣

∣

N
∑

i=1

ejψ̃i

∣

∣

∣

∣

∣

(13)

where the phases̃ψi are the received phases after synchronization.

V. ANALYSIS OF THE SDDB ALGORITHM

A. Noiseless Scenario

If the noise is negligible,v can be estimated exactly. For a givenK, the optimum beamforming

weight ŵk out of the set in (9) is

ŵk = argmin
wk∈WK

‖v − wk‖2. (14)

By using this criterion, the beamforming coefficient with minimum angular distance fromv is

chosen, which gives the optimal quantized phase pre-compensation to align the node to the real

axis. ForK = 4, this is graphically illustrated in Fig. 1(a), where regionboundaries are marked

with dashed lines. In Fig. 1(a),v falls in D1, hencew1 will be chosen andφ = −π/2. Without

noise, the synchronized phasesψ̃i are independent and uniform inD0, i.e., in [−π/K,+π/K).

This is because the unsynchronized phasesψi are uniform in[0, 2π) and the decision in (14) is

noiseless, hence all the nodes will receive the correct information relative to their beamforming

weight. This will then lead their synchronized phases to be uniformly distributed around the

bias and to yield the best achievable RSS for a givenK. The performance is limited exclusively

by the resolutionK, and it is therefore of interest to characterize how the NRSSbehaves as a

function thereof. The following result informs of that behavior.
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Proposition 1: In the absence of noise, the expected value of the NRSS behaves as

E

[

|R̂N,K |
]

= 1−
(

1− 1

N
+

1

N3

)

π2

6K2
+ o

(

1

K2

)

. (15)

Proof: See Appendix A.

Taking advantage of the fact that the number of nodes is typically large, we can further derive

a lower bound onE[|R̂N,K |] that is very tight for values ofN of interest and exact forN → ∞.

Proposition 2: In the absence of noise, the expected value of the NRSS satisfies

E

[

|R̂N,K |
]

≥ E

[

<(R̂N,K)
]

(16)

=
K

π
sin
( π

K

)

(17)

where<(·) denotes real part.

Proof: See Appendix A.

Indeed, since without noise the synchronized angles are uniformly distributed around zero,

the corresponding imaginary parts cancel out asN → ∞.

Fig. 2 compares the NRSS obtained through Monte-Carlo simulation for increasingK, with

its expansion in Proposition 1 and with the lower bound in Proposition 2. A number of105

Monte-Carlo iterations has been considered to obtain the average NRSS for different values of

K. As can be seen, the lower bound is very tight already forN = 100. Fig. 3 illustrates the

tightness of the lower bound in Proposition 2 withK = 2, which is the worst case. Since we have

shown that the tightness increases with bothK andN , the bound becomes in fact exact if either

of them grows without bound. The plot in Fig. 3 represents theachievable gain as a function

of Ns, i.e., the number of synchronized nodes. This shows what theachievable normalized gain

would be ifNs nodes were transmitting, and it is obtained by multiplying (17) byNs/N .

Next, the second raw moment of|R̂N,K | is characterized.

Proposition 3: In the absence of noise,

E

[

|R̂N,K |2
]

=
1

N
+
N − 1

N

(

K

π

)2

sin2
( π

K

)

. (18)

Proof: See Appendix B.

Using Proposition 3, the variance of|R̂N,K | can be easily established.
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Fig. 1. Example of phase quantization: usingSK is equivalent to quantizing the phase space inK regions.
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Fig. 2. Achievable NRSS with SDDB in noiseless conditions, with N = 100, as a function ofK: Monte-Carlo simulation

results compared with the analytical expressions in Propositions 1 and 2.

B. Impact of Noise

When the noise term in (11) is not negligible, the receiver will have to choosêwk based on

the noisy received signal,r, as follows:

ŵk = argmin
wk∈WK

‖r − wk‖2. (19)
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Fig. 3. Lower bound for the achievable NRSS for SDDB whenK = 2; expression (17) is used;N = 100.

However, since the actual goal of the receiver is aligningv, the useful part ofr, there will be

a non-zero probability of making an incorrect decision. Choosing a wrong phase shift will not

yield the optimum NRSS that is achievable for a givenK.

1) Achievable NRSS for FiniteK: Let us first investigate the effect of noise on the NRSS

whenK is finite, which corresponds to the practical cases of constrained capacity on the feedback

link. Invoking the polar representation

r = AejΘ (20)

the decision in (19) now depends exclusively onΘ. If Θ falls within Dk, the signal for the node

in question will be multiplied byw∗
k. Clearly, this can lead to a wrong decision, as shown in

Fig. 1(b). Due to the noise, therefore, the synchronized phases are no longer uniformly distributed

and are not even necessarily withinD0. In this case, the distribution of the synchronized phases

and, as a result, the NRSS will depend on the received SNR. We define the per-node SNR as

γ ,
1

σ2
(21)

and denote the SNR-dependent normalized resultant byR̂N,K,γ. The result that follows is a

counterpart to Proposition 2, but with noise accounted for.As in the noiseless case, the bound
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is tight for values ofN of interest and exact forN → ∞.

Proposition 4: In the presence of noise,

E

[

|R̂N,K,γ|
]

≥ K

2π

∫ + π

K

− π

K

K−1
∑

k=0

cos

(

ψ′ − k
2π

K

)

pDk|ψ=ψ′ dψ′ (22)

wherepDk|ψ=ψ′ is the probability thatΘ falls within Dk conditioned toψ beingψ′, namely

pDk|ψ=ψ′ = Prob{Θ ∈ Dk|ψ = ψ′} =

∫ k 2π

K
+ π

K

k 2π

K
− π

K

fΘ|ψ=ψ′(θ)dθ (23)

where

fΘ|ψ=ψ′(θ) =
1

2π
e−γ

{

1 + 2eγ cos
2(θ−ψ′)√γπ cos(θ − ψ′)

[

1−Q
(

√

2γ cos(θ − ψ′)
)]}

(24)

with Q(·) the Gaussian Q-function

Q(x) ,
1√
2π

∫ +∞

x

e−
z
2

2 dz. (25)

Proof: See Appendix C.

For γ → ∞, the right-hand-side of (24) becomes a delta function atθ = ψ′ which reduces

(22) to the noiseless expression in Proposition 2 and, as mentioned at that point, the performance

becomes limited only by the finite granularityK.

Particularly insightful is the analysis in the low- and high-SNR regimes. The former is

representative of the conditions in which an actual sensor network necessitating of distributed

beamforming might have to operate, and the latter serves as abridge to the noiseless results

presented earlier.

Proposition 5: At low SNR,

E

[

|R̂N,K,γ|
]

≥
√

γ

π

K

2
sin
( π

K

)

+ o(γ). (26)

Proof: See Appendix C.

Fig. 4 exemplifies the lower bound for the achievable NRSS in the presence of noise forK = 2;

the exact expression in (22) is represented, together with its low- and high-SNR expansions

respectively (26) and (17). Fig. 5 presents the same result for K = 4. In both figures, the curve

obtained through Monte-Carlo simulation is also represented. The average NRSS is considered
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Fig. 4. Lower bound for the achievable NRSS for SDDB forK = 2 as a function of the SNR with its approximations

for γ → 0, shown in (26) andγ → ∞, shown in (17); the curve obtained through simulation is also represented, with105

Monte-Carlo iterations;N = 100.

for different values of SNR, ranging from−15 to +20 dB. Except for very low SNR, the bound

is very tight. Fig. 6 compares the lower bound with Monte-Carlo curves (105 trials) obtained

with different values of nodes in the network,N , more specifically forN = 20, 50, 100, and

for K = 2. As can be seen, for values of SNR of relevance, such as the interval [−5,+5] dB,

the bound appears to be tight even for smallN and smallK. Clearly, the bound becomes more

accurate as the number of nodes in the network increases. Fig. 7 represents angular histograms

for different values of SNR, and forK = 2. When the SNR is low, the phases remain spread out

because of the high probability with which noise prevents the receiver from reporting the correct

feedback. At high SNR, in contrast, the final distribution isfairly uniform over the correct slice

of the plane (forK = 2).

As can be appreciated, the combination of the low- and high-SNR expressions is valid over

a fairly wide range of SNRs.

2) Achievable NRSS forK → ∞: With infinite resolution, the regionsDk collapse to punctual

real phase values. There is no constraint on the capacity of the feedback link and thus the
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Fig. 5. Lower bound for the achievable NRSS for SDDB forK = 4 as a function of the SNR with its approximations

for γ → 0, shown in (26) andγ → ∞, shown in (17); the curve obtained through simulation is also represented, with105

Monte-Carlo iterations;N = 100.
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Fig. 6. Lower bound for the achievable NRSS for SDDB withK = 2 as a function of the SNR compared with Monte-Carlo

simulations (105 trials) with different values ofN .
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Fig. 7. Angular histograms for SDDB with resolutionK = 2 for different SNR values.

performance is limited exclusively by noise. As it turns out, this limiting behavior is approached

closely with modest values ofK, which reinforces the value of the resulting expressions.

Proposition 6: The expected value of|R̂N,∞,γ| satisfies

E

[

|R̂N,∞,γ|
]

≥ e−γ/2

2

√
πγ
(

I0

(γ

2

)

+ I1

(γ

2

))

(27)

whereI0(·) andI1(·) are the modified Bessel functions of first kind of orders0 and1, respectively.

Proof: See Appendix D.

The low- and high-SNR behaviors with noise and infinite resolution are obtained by expanding

Proposition 6. At low SNR, the right-hand side of (27) behaves as

√
πγ

2
+ o (γ) (28)

while, at high SNR, it behaves as

1 + (1 + e−γ)O

(

1

γ

)

. (29)

Fig. 8 compares (27), (28), (29), and the curve obtained through Monte-Carlo simulation. The

lower bound for the achievable NRSS is plotted as a function of the SNR. It can be seen that

(28) closely matches (27) below roughly−5 dB while (29) closely matches it above roughly5

dB.
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Fig. 8. Achievable NRSS for SDDB whenK → ∞ as a function of the SNR expressed in (27), and its approximations for

γ → 0, expressed in (28), andγ → ∞, expressed in (29); the curve obtained through simulation is also represented, with105

Monte-Carlo iterations;N = 100.

VI. PERFORMANCE COMPARISON: RANDOM V. DETERMINISTIC

In this section, we compare the R1BF and the SDDB approaches both without and with

noise. The curves again are the result of Monte-Carlo simulation campaigns with105 iterations.

A network ofN = 100 nodes is considered, and the initial phases prior to synchronization are

modeled as uniform in[0, 2π).

A. Noiseless Scenario

In Fig. 9, the noiseless performance of the random algorithm(R1BF, cf. Section III), is

illustrated in terms of the NRSS improvement over time. A window of 450 time slots is

considered. The distribution for the random shiftsfδi(·) is uniform in [−π/β,+π/β] for everyi,

and the curves for distinct values ofβ are shown. As can be seen, a larger variance allows for a

very rapid NRSS increase in the initial stages, but at the price of a slow eventual convergence. In

contrast, smaller variances yield a very low initial growthrate, in return for faster convergence

as the NRSS approaches its maximum. Authors in [1] show how anadaptive behavior improves
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Fig. 9. NRSS for R1BF without noise, withN = 100, andfδi(·) uniform in [−π/β,+π/β] for every i.

convergence. In this case, nodes can adjust the variance of the distribution, optimizing it at each

iteration according to the NRSS value. But this approach is practically unfeasible since it would

require the nodes to have full knowledge of the NRSS at each step, and thus the receiver to

send a much higher-rate feedback. By considering the variance of this distribution to be fixed,

we relate to a more practical and realistic case.

Fig. 10 is related to SDDB without noise (cf. Section V-A), presenting the NRSS as a function

of the number of activated and synchronized devices,Ns[m], as given in (4). The plot can also be

interpreted as a function of time, since nodes are synchronized successively (one per time slot)

and thus the curves indicate the NRSS that would be attained by the activated nodes after a certain

number of rounds. The first value of each curve corresponds toa single-node transmission, and

the last value (Ns[m] = N) is the NRSS achieved when the complete network is beamforming.

The different curves correspond to different resolutions,K. When the receiver can only send

one bit of feedback (K = 2), the achievable NRSS is4 dB away from the maximum achievable

value. WhenK = 4, the attainable NRSS is within1 dB of the maximum. AsK increases even

further, the improvement becomes minute. Hence, the most relevant cases are (i) K = 2, when

the feedback rate is1 bit and a fair comparison with R1BF is possible, (ii ) K = 4, which shows
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Fig. 10. NRSS for SDDB without noise, with parameterK; N = 100.

that by simply adding one more feedback bit, SDDB yields veryhigh gains after onlyN time

rounds, and (iii ) K → ∞, which approximates well all the remaining values ofK.

Fig. 11 presents a noiseless comparison between R1BF and SDDB. The graph depicts the

NRSS as a function of time (for SDDB, recall, the NRSS at a given time slotm indicates the

NRSS achieved bym synchronized nodes). The R1BF curves correspond to different values of

β, and the curves for SDDB represent the casesK = 2 andK = 4. During the first time slot, all

the unsynchronized nodes in R1BF yield an initial normalized gain of1/
√
N . For SDDB, in turn,

the initial gain corresponds to a single-node transmission. With one bit of feedback, SDDB starts

outperforming R1BF after50 time slots and it becomes roughly4 dB better after100 slots. This

comparison is forβ = 4, which is the best choice for R1BF in this time frame. This improvement

comes with an increase of network coordination with respectto R1BF. Nodes in fact have to

be indexed and they must transmit in a predefined order. Indexing can be done once, when the

network is deployed. Transmitting in turn can be achieved with a token passing mechanism, or

the feedback itself could trigger the progressive awakening of each sensor. At the price of an

extra feedback bit, SDDB starts outperforming R1BF after only30 time slots, becoming roughly
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8 dB better after100 time slots. In addition, recall, SDDB has anN-fold power saving factor per

time slot. A time frame of an order of magnitude larger is required for R1BF to achieve gains

comparable to the ones achieved by SDDB in100 time slots. As mentioned in Section II, in

practical scenarios the phase of each local oscillator drifts over time, causing progressive carrier

misalignment and consequent loss in terms of beamforming gain. Both oscillator dynamics and

frequency mismatches due to imperfect carrier synchronization have to be taken into account and

properly modeled to identify the time interval within whichquasi-static oscillators’ phase can be

assumed, identified as Oscillators’ Coherence Time (OCT). The OCT interval then determines

the rate of periodic phase re-synchronization in order to maintain tracking, according to the

level of tolerance of the application. The problem of modeling phase drift has been studied, for

example, in [36] and [11]. In both these works, the drift is modeled as a non-stationary Gaussian

process with zero mean and a time-dependent variance. For instance, in [11] the time-dependent

variance of the driftσ2
d(t) is expressed asσ2

d(t) = c∆t, where c is a parameter dependent

on the physical properties of the local oscillator and is measured in rad2 × Hz, and∆t is the

considered time frame in seconds. This model is based on the work in [37]. As stated in [11],

for low-cost radio-frequency oscillators, parameterc ranges from1 to 20 rad2 × Hz. Taking

c = 10 as the typical drift parameter, for a network ofN = 100 nodes, it can be verified that the

beamforming gain experiences a5 dB decrease with respect to the value achieved after phase

synchronization, in a time frame of100 ms. Clearly signals continue experiencing misalignment

during the synchronization procedure itself, hence, reduction of convergence time is mandatory,

and this is exactly the issue we address in this work. Moreover, when phase drift is severe, or

when the size of the network is so large that carrier synchronization requires long time spans,

adaptive tracking methods can be employed, such as the ones suggested in [21], [22], which

have been proven to be very robust against channel drift. Since the statistics of the phase drift

are known, ad hoc phase re-alignment routines can be tailored to the application requirements.

These are all very interesting points that pave the way for future developments of this work.
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Fig. 11. Noiseless comparison between R1BF and SDDB, with different shift distributions for R1BF (fδi(·) uniform in

[−π/β,+π/β] for every i), andK = 2, 4 for SDDB; N = 100.

B. Noisy Scenario

Fig. 12 represents a comparison (through simulation) between the R1BF and SDDB schemes

when the SNR is low, specifically0 dB, which corresponds toσ2 = 1, in a time frame of103

time slots. As in the noiseless case, SDDB outperforms R1BF, although the gap between them is

somewhat smaller. Still, in order for R1BF to achieve a gain comparable to what SDDB achieves

in 100 time slots, a time frame of an order of magnitude longer is required. The R1BF curves

are forβ = 4, 10, 20, respectively, whereas the SDDB curves are forK = 2 andK = 4. After

80 slots, SDDB with one feedback bit starts outperforming R1BF with β = 4, which is the best

performing one, and the gap after100 time slots is roughly2 dB. With two bits of feedback, the

crossover occurs after less than50 slots and the gap after100 time slots increases to roughly

5 dB.

VII. CONCLUSION

We have presented a new phase-alignment algorithm for distributed beamforming. This

algorithm can be regarded as a member of the family of deterministic algorithms initiated in
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Fig. 12. Simulated comparison between R1BF and SDDB in the presence of noise;fδi(·) uniform in [−π/β,+π/β] for every

i; N = 100.

[21]. Based, as previous deterministic algorithms, on a closed-loop procedure involving feedback

from the receiver, its main novelty lies in its sequential nature: each node transmits only once

throughout the entire alignment process and hence the powerconsumption scales withN . This

drastically reduces the power consumption with respect to all existing solutions (deterministic

and random), where each node must transmit repeatedly throughout the process, thereby scaling

the power consumption withN2. This advantage might be crucial for boosting the life span of

a sensor network.

In contrast with most previous analyses of distributed beamforming, in this paper noise has

been brought explicitly into the models. Analytic expressions that characterize the performance

of the new algorithm, without and with noise, have been put forth, with emphasis on various

limiting regimes of interest.

The performance of the new algorithm has been compared against those of the schemes

hitherto formulated, and it has been shown to converge faster than random algorithms with

identical feedback rate and as fast as all other deterministic algorithms. In both cases, recall,

this is achieved with drastically less power consumption.
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APPENDIX A

PROOF OFPROPOSITIONS1 AND 2

For notational compactness, let us define

x ,
1

N

N
∑

i=1

cos ψ̃i (30)

y ,
1

N

N
∑

i=1

sin ψ̃i (31)

whereψ̃1, . . . , ψ̃N are independent and identically distributed uniformly in[−π/K,+π/K) and

the NRSS is simply
√

x2 + y2. For K → ∞, clearly x → 1 and y → 0. Thus, we expand the

NRSS aroundx = 1 andy = 0 obtaining
√

x2 + y2 = x+
3

2
y2 − 3

2
xy2 +

1

2
x2y2 +O

(

(x− 1)3
)

+O
(

(x− 1)3
)

y2 +O
(

y3
)

. (32)

We now take expectations over̃ψ1, . . . , ψ̃N . For the first term in (32),

E [x] =

∫ + π

K

− π

K

. . .

∫ + π

K

− π

K

(

1

N

N
∑

i=1

cos ξi

)

fψ̃1···ψ̃N
(ξ1, . . . , ξN)dξ1 · · · dξN (33)

=
1

N

(

K

2π

)N ∫ + π

K

− π

K

. . .

∫ + π

K

− π

K

(

N
∑

i=1

cos ξi

)

dξ1 · · · dξN (34)

=
K

π
sin
( π

K

)

(35)

= 1− π2

6K2
+ o

(

1

K2

)

. (36)

For the second term, in turn,

E
[

y2
]

=

∫ + π

K

− π

K

. . .

∫ + π

K

− π

K

(

1

N

N
∑

i=1

sin ξi

)2

fψ̃1···ψ̃N
(ξ1, . . . , ξN)dξ1 · · · dξN (37)

=
1

N2

(

K

2π

)N ∫ + π

K

− π

K

. . .

∫ + π

K

− π

K

(

N
∑

i=1

sin ξi

)2

dξ1 · · · dξN (38)

=
K

2πN

(

π

K
− 1

2
sin

(

2π

K

))

(39)

=
π2

3NK2
+ o

(

1

K2

)

(40)

DRAFT December 10, 2012



www.manaraa.com

27

and, for the third term,

E
[

xy2
]

=

∫ + π

K

− π

K

. . .

∫ + π

K

− π

K

(

1

N

N
∑

i=1

cos ξi

)(

1

N

N
∑

i=1

sin ξi

)2

fψ̃1···ψ̃N
(ξ1, . . . , ξN)dξ1 · · · dξN (41)

=
1

N3

(

K

2π

)N ∫ + π

K

− π

K

. . .

∫ + π

K

− π

K

(

N
∑

i=1

cos ξi

)(

N
∑

i=1

sin ξi

)2

dξ1 · · ·dξN (42)

=
K

3πN2
sin3

( π

K

)

+
N − 1

N2

K2

2π2
sin
( π

K

)

(

π

K
− 1

2
sin

(

2π

K

))

(43)

=
π2

3N2K2
+
N − 1

N2

π2

3K2
+ o

(

1

K2

)

(44)

Finally, the fourth term in (32)

E
[

x2y2
]

=

∫ + π

K

− π

K

. . .

∫ + π

K

− π

K

(

1

N

N
∑

i=1

cos ξi

)2(

1

N

N
∑

i=1

sin ξi

)2

fψ̃1···ψ̃N
(ξ1, . . . , ξN)dξ1 · · · dξN (45)

=
1

N4

(

K

2π

)N ∫ + π

K

− π

K

. . .

∫ + π

K

− π

K

(

N
∑

i=1

cos ξi

)2( N
∑

i=1

sin ξi

)2

dξ1 · · · dξN (46)

=
K

32πN3

(

4π

K
− sin

(

4π

K

))

+
N − 1

N3

K2

4π2

(

π2

K2
− 1

4
sin2

(

2π

K

))

+
4

3

N − 1

N3

(

K

2π

)2

sin4
( π

K

)

+ 2
(N − 1)(N − 2)

N3

(

K

2π

)3

4 sin2
( π

K

)

(

π

K
− 1

2
sin

(

2π

K

))

(47)

=
π2

3K2N3
+
N − 1

N3

π2

3K2
+
N − 1

N3

π2

3K2
+ 2

(N − 1)(N − 2)

N3

π2

3K2
+ o

(

1

K2

)

(48)

By putting together (36), (40), (44), and (48), the expectation of (32) gives (15). This proves

Proposition 1.

Proposition 2 follows from neglecting the imaginary part ofR̂N,K , in which caseE[|R̂N,K |]
is given directly by (35).

December 10, 2012 DRAFT



www.manaraa.com

28

APPENDIX B

PROOF OFPROPOSITION3

The second raw moment of|R̂N,K | equals

E

[

|R̂N,K |2
]

=

∫ + π

K

− π

K

. . .

∫ + π

K

− π

K

(

1

N

N
∑

i=1

cos ξi

)2

fψ̃1···ψ̃N
(ξ1, . . . , ξN)dξ1 · · · dξN

+

∫ + π

K

− π

K

. . .

∫ + π

K

− π

K

(

1

N

N
∑

i=1

sin ξi

)2

fψ̃1···ψ̃N
(ξ1, . . . , ξN)dξ1 · · · dξN (49)

=
1

N2

(

K

2π

)N ∫ + π

K

− π

K

. . .

∫ + π

K

− π

K

(

N
∑

i=1

cos ξi

)2

dξ1 · · · dξN

+
1

N2

(

K

2π

)N ∫ + π

K

− π

K

. . .

∫ + π

K

− π

K

(

N
∑

i=1

sin ξi

)2

dξ1 · · ·dξN . (50)

The first term in (50) yields

K

4πN
sin

(

2π

K

)

+
1

2N
+

(

K

π

)2
N − 1

N
sin2

( π

K

)

(51)

whereas the second term in (50) was already evaluated in Appendix A, Eq. (39). The result

equals the claim of Proposition 3.

APPENDIX C

PROOF OFPROPOSITIONS4 AND 5

Let us lower boundE[|R̂N,K,γ|] with E[<(R̂N,K,γ)] by first finding the distribution ofΘ. The

received complex signalr in (11) can be written as

r = cosψ + n< + j(sinψ + n=) (52)

where, if z is a complex scalar,z< and z= represent its real and imaginary part, respectively.

For a givenψ = ψ′, r< and r= are independent Gaussian random variables with varianceσ2/2

and meancosψ′ and sinψ′, respectively. The PDF ofr conditioned onψ = ψ′ is

fr|ψ=ψ′(ρ) =
γ

π
e−γ((ρ<−cosψ′)2+(ρ=−sinψ′)2). (53)
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Based on (53), the joint PDF ofA andΘ, conditioned onψ = ψ′, is then [38]

fA,Θ|ψ=ψ′(a, θ) =
γ

π
ae−γ(a

2+1−2a cos(θ−ψ′)) (54)

and, integrating overa, we obtain the marginal PDF ofΘ conditioned onψ = ψ′ as

fΘ|ψ=ψ′(θ) =

∫ +∞

0

fA,Θ|ψ=ψ′(a, θ)da (55)

=
γ

π
e−γ sin

2(θ−ψ′)

∫ +∞

0

ae−γ(a−cos(θ−ψ′))2da. (56)

The integration in (56) gives (24). The result in (22) representsE[<(R̂N,K,γ)] because of the

following: for a givenψ′, depending on the noise realization, the received signal may fall in

any of theK different regions. IfΘ falls within Dk, a phase shift of2πk/K will be applied

to the signal, and the phase of its useful part will beψ′ − 2πk/K. Hence, the useful part of

each node’s signal becomes a weighted sum ofK cosines, whose phases areψ′ − 2πk/K,

for k = 0, . . . , K − 1, and whose weights correspond to the probability ofΘ being in the

corresponding decision regionDk. The expression is then averaged according to the distribution

of ψ that we consider uniform in[−π/K,+π/K). Due to the symmetry of the system, this is

equivalent to consideringψ uniformly distributed in any of theK regions. Proposition 4 is thus

proven.

For low SNR, (24) expands as

fΘ,γ|ψ=ψ′(θ) =
1

2π
+
√
γ
cos(θ − ψ′)

2
√
π

+ γ
(2 cos2(θ − ψ′)− 1)

2π
+ o(γ) (57)

and, plugging (57) into (23), we obtain

pDk,γ|ψ=ψ′ =
1

K
+

√

γ

π
sin
( π

K

)

cos

(

ψ′ − k2π

K

)

+
γ

2π
sin

(

2π

K

)

cos

(

2ψ′ − k4π

K

)

+ o(γ).

(58)
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By using (58) in (22), we obtain:

E

[

|R̂N,K,γ|
]

≥ 1

π
sin
( π

K

)

K−1
∑

k=0

cos

(

2kπ

K

)

+

√

γ

π

K

8π
sin
( π

K

)

[

4π + 2 sin

(

2π

K

)

·
K−1
∑

k=0

cos

(

4kπ

K

)]

+ γ
K

12π2
sin

(

2π

K

)K−1
∑

k=0

cos

(

2kπ

K

)[

3 sin
( π

K

)

+ sin

(

3π

K

)(

2 cos

(

4kπ

K

)

− 1

)]

+ o(γ). (59)

Expression (59) can be simplified by observing that, for every K

K−1
∑

k=0

cos

(

2πk

K

)

=
1

2

K−1
∑

k=0

(

ej
2πk

K + e−j
2πk

K

)

=
1

2

(

1− ej2π

1− ej
2π

K

+
1− e−j2π

1− e−j
2π

K

)

= 0. (60)

This is also valid for the summation ofcos(4kπ/K) terms in (59). Hence, the coefficients that

multiply the terms of orders0 and1 in the expression (59) are always zero, and this simplification

yields (26). This proves Proposition 5.

APPENDIX D

PROOF OFPROPOSITION6

Without loss of generality, we can fixψ = 0, which is equivalent to fixing any other value in

[0, 2π). With that r = 1 + n and (53) becomes

fr|ψ=0(ρ) =
γ

π
e−γ((ρ<−1)2+ρ2

=
), (61)

from which fA,Θ|ψ=0(a, θ) in turn becomes

fA,Θ|ψ=0(a, θ) =
a

π
γe−γ(a

2+1−2a cos θ) (62)

DRAFT December 10, 2012



www.manaraa.com

31

and the distribution ofΘ conditioned onψ = 0 is given by

fΘ|ψ=0(θ) =

∫ +∞

0

fA,Θ(a, θ)da (63)

=
γ

π
e−γ sin

2 θ

∫ +∞

0

ae−γ(a−cos θ)2da. (64)

The integration in (64) gives

fΘ|ψ=0(θ) =
1

2π
e−γ

{

1 + 2eγ cos
2 θ√πγ cos θ

[

1−Q
(

√

2γ cos θ
)]}

. (65)

In order to de-condition (65), the following integration can be carried out:
∫ +π

−π

fΘ(θ − ψ′)δ(ψ′)dψ′ = fΘ(θ) (66)

becauseψ is conditioned to having a punctual deterministic value, and hence its distribution is

a delta function.

The first raw moment of the real part of̂RN,∞,γ can be written as

E

[

<
(

R̂N,∞,γ

)]

=

∫ +π

−π

cos θfΘ(θ)dθ. (67)

This derives from the fact that the node will rotate its vector exactly byθ, which is the phase

observed at the receiver. As a consequence, instead of remaining on the real axis, as it would

if the feedback were correct, its phase is centered on zero with distributionfΘ(·). In order to

integrate (67), we proceed as follows: reordering the termsin (65), we write

fΘ(θ) =
1

2π
e−γ +

√

γ

4π
e−γ sin

2 θ cos θ +

√

γ

4π

(

1− 2Q(
√

2γ cos θ)
)

e−γ sin
2 θ cos θ (68)

and we then define the integrals

I1 ,
1

2π
e−γ

∫ +π

−π

cos θdθ (69)

I2 ,

√

γ

4π

∫ +π

−π

e−γ sin
2 θ cos2 θdθ (70)

I3 ,

√

γ

4π

∫ +π

−π

(

1− 2Q(
√

2γ cos θ)
)

e−γ sin
2 θ cos2 θdθ (71)

such that (67) is simplyI1 + I2 + I3. Obviously, (69) is zero and (71) is also zero because

the integrand is an odd function forθ ∈ [−π,+π). In turn, (27) admits the closed form that

constitutes the claim of Proposition 6.
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